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Abstract In the last time important results in multiobjective programming involving
type-I functions were obtained (Yuan et al. in: Konnov et al. (eds) Lecture notes in eco-
nomics and mathematical systems, 2007; Mishra et al. An Univ Bucureşti Ser Mat, LII(2):
207–224, 2003). Following one of these ways, we study optimality conditions and generalized
Mond-Weir duality for multiobjective programming involving n-set functions which satisfy
appropriate generalized univexity V-type-I conditions. We introduce classes of functions
called (ρ, ρ′)-V-univex type-I, (ρ, ρ′)-quasi V-univex type-I, (ρ, ρ′)-pseudo V-univex type-
I, (ρ, ρ′)-quasi pseudo V-univex type-I, and (ρ, ρ′)-pseudo quasi V-univex type-I. Finally,
a general frame for constructing functions of these classes is considered.

Keywords Optimality conditions · Duality · Multi objective programming ·
n-set functions · Generalized univexity V-type-I

1 Introduction

The analysis of optimization problems with set or n-set functions i.e. selection of measur-
able subsets from a given space, has been the subject of several papers [2–5,14,16,18–22].
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These problems occur naturally in a variety of situations dealing with optimal selection of
measurable subsets.

The concept of optimizing set functions arises in various mathematical areas. Thus, an
early result was the Neyman–Pearson lemma of statistics [17], which states only a sufficient
condition for maximizing an integral over a single set. Later, it was established the necessity
of this condition and the existence of a solution.

A generalization of these results to n-set and a duality theory was developed in [6,7], for
regional design problems (districting, facility location, warehouse layout, urban planning).

Also, constrained optimization problems involving set or n-set functions have arisen in
fluid flow, electrical insulator design and optimal plasma confinement [3,4].

General theory for optimizing n-set functions was first developed by Morris [16] who,
for functions of a single set, obtained results that are similar to the standard mathemati-
cal programming problem. Zalmai [28] considered several practical applications for a class
of nonlinear programming problems involving a single objective and differentiable n-set
functions, and established sufficient optimality and duality results under generalized
ρ-convexity conditions. Many publications have appeared in the last decade dealing with
duality in multi-objective programming involving set-functions [2,8,14,18,19,22,23,27],
and univexity [10–12,25].

For a historical survey of optimality conditions and duality for programming problems
involving set and n-set functions the reader is referred to [24].

Recently, important results in multiobjective programming involving type-I functions were
obtained. Thus, Yuan et al. [26] introduce the class of (C, α, ρ,d) type-I functions, which
extends many known classes of maps.

Mishra et al. [14] extended the generalized type-I vector valued functions introduced by
Aghezzaf and Hachimi [1] to n-set functions and they established optimality conditions and
Mond–Weir type, respectively general Mond–Weir type duality results for a multiobjective
programming problem involving n-set functions.

In [20], Preda and Bătătorescu considered a minmax programming problem involving
several generalized B-vex n-set functions and obtained optimality results and Wolfe type
duality theorems.

Along the line of Jeyakumar and Mond [9], Preda and Stancu-Minasian [21] defined new
classes of n-set functions, called d-type-I, d-quasi type-I, d-pseudo type-I, d-quasi-pseudo
type-I, d-pseudo-quasi type-I. They obtained necessary and sufficient optimality criteria and
duality results, considering the concept of a weak minimum. Mishra et al. [13] established
for multiobjective programming problems some sufficiency results using Lagrange multi-
plier conditions and under various types of generalized V-univexity type-I requirements they
proved weak, strong and converse duality theorems.

Following this way, in Sect. 2 of this paper we consider some classes of univexity type-I
functions and we state sufficient and necessary optimality condition for a multi-objective
optimization problem involving set functions. In Sect. 3 we give some duality results for a
generalized Mond–Weir dual problem and we prove weak, strong and converse duality theo-
rems. In the last section we give a procedure, through which we may transform examples of
V -univexity type optimization problems on R

n into V-univexity type optimization problems
that involve set or n-set functions.

2 Preliminaries

In this section we introduce the notations and definitions which will be used throughout the
paper. Let R

n be the n-dimensional Euclidean space.
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For any vectors x = (x1, . . . , xn) ∈ R
n , y = (y1, . . . , yn) ∈ R

n, we use the following
notation:

x < y iff xi < yi , i = 1, 2, . . . , n; x � y iff xi � yi , i = 1, 2, . . . , n;

x ≤ y iff x � y, but x �= y; x�y =
n∑

i=1

xi yi .

Let R
n+ be the nonnegative orthant of R

n , i.e.

R
n+ = {x = (x1, . . . , xn) ∈ R

n | xi � 0, i = 1, . . . , n
}
.

For an arbitrary vector x ∈ R
n and a subset J of the index set {1, 2, . . . , n} , we denote

by xJ the vector with components x j , j ∈ J .
Let (X, �, µ) be a finite atomless measure space with L1 (X, �, µ) a separable space. For

h ∈ L1 (X, �, µ) and Z ∈ � with indicator function IZ ∈ L∞ (X, �, µ), the integral
∫

Z hdµ
will be denoted by 〈h, IZ 〉.

Now we shall define the notion of differentiability for n-set functions. Morris [16] intro-
duced differentiability for set functions, subsequently extended by Corley [5] to n-set func-
tions.

A function ϕ :� → R is said to be differentiable at T if there is DϕT ∈ L1 (X, �, µ),
called the derivative of ϕ at T , such that

ϕ (S) = ϕ (T )+ 〈DϕT , IS − IT 〉 + ψ (S, T )

for each S ∈ �, where ψ : � × � → R and has the property that ψ (S, T ) is o (d ′(S, T )),
that is, lim

d ′(S,T )→0
ψ (S, T ) /d ′ (S, T ) = 0, and d ′ is a pseudometric on � [16].

A function h :�n → R is said to have a partial derivative at S0 = (
S0

1 , . . . , S0
n

)
with

respect to its k-th argument, 1 � k � n, if the function

ϕ(Sk) = h(S0
1 , . . . , S0

k−1, Sk, S0
k+1, . . . , S0

n )

has derivative DϕS0
k
, and we define Dkh(S0) = DϕS0

k
. If the Dkh(S0), 1 � k � n, all exist,

then we put Dh(S0) = (D1h(S0), . . . , Dnh(S0)). If H : �n → R
m, H = (H1, . . . , Hm),

we put Dk H(S0) = (Dk H1(S0), . . ., Dk Hm(S0)).
A function h :�n → R is said to be differentiable at S0 ∈ �n if there is Dh(S0) and

ψ :�n × �n → R such that

h(S) = h(S0)+
n∑

k=1

〈
Dkh(S0), ISk − IS0

k

〉
+ ψ(S, S0)

where ψ(S, S0) is o[d(S, S0)] for all S ∈ �n and here d is a pseudometric on �n , i.e.,

d (S, T ) =
[

n∑
k=1

µ2 (Sk�Tk)

]1/2

, where � denotes the symmetric difference [5].

A vector valued set function f = ( f1, . . . , f p
) : � → R

p is differentiable on � if its all
component functions fi , 1 � i � p, are differentiable on �.

In this paper we consider the n-set function multiobjective optimization problem

minimize
{

f (S) = ( f1 (S) , . . . , f p (S)
) | g (S) � 0, S ∈ �n}, (VP)

where f : �n → R
p and g : �n → R

m, g = (g1, . . . , gm), are differentiable n-set functions
defined on �n . The problem is to find the collection of (properly) efficient sets defined below.
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Let P = {S ∈ �n | g (S) � 0
}

be the set of all feasible solutions to problem (VP).

Definition 1 A feasible solution S0 ∈ P is said to be an efficient solution (Pareto solution)
to problem (VP) if there exists no other feasible solution S ∈ P such that f (S) ≤ f (S0).

Definition 2 An efficient solution S0 to (VP) is called properly efficient (Geoffrion solution),
if there is a positive number M with the property that, if fi (S) < fi (S0) for any i and S ∈ P ,

then
fi (S0)− fi (S)

f j (S)− f j (S0)
� M for some j for which f j (S) > f j (S0).

We shall consider a partition {J0, J1, . . . , Jk} of the index set {1, 2, . . . ,m}, that is,
k⋃

s=0
Js = {1, 2, . . . ,m} and Js ∩ Jt = ∅, for any s �= t .

Put

ψi
(
S, λJ0

) = fi (S)+ λ�
J0

gJ0 (S)

for any i, 1 � i � p, where λ ∈ R
m+ is a given vector. Moreover, we consider vectors

ρ = (ρ1, . . . , ρp
) ∈ R

p , ρ′ = (ρ′
1, . . . , ρ

′
k

) ∈ R
k , and real numbers ρ0, ρ

′
0 ∈ R.

The following definitions extend similar concepts defined by Jeyakumar and Mond [9]
and Mishra et al. [13].

Definition 3 We say that problem (VP) is (ρ, ρ′)-V-univex type I at S0 ∈ P according to the
partition {J0, J1, . . . , Jk} relative to λ ∈ R

m+, if there is positive real functions α1, . . . , αp and
β1, . . . , βk defined on �n × �n , nonnegative functions b0 and b1, also defined on �n × �n ,
ϕ0 : R → R, ϕ1 : R → R, such that

b0(S, S0)ϕ0
[
ψi
(
S, λJ0

)− ψi
(
S0, λJ0

)]
� αi (S, S0)

n∑

t=1

〈
Dtψi

(
S0, λJ0

)
, ISt − IS0

t

〉

+ρi d
2(S, S0) (1)

and

− b1(S, S0)ϕ1

⎡

⎣
∑

j∈Js

λ j g j (S
0)

⎤

⎦ � βs(S, S0)
∑

j∈Js

λ j

n∑

t=1

〈
Dt g j (S

0), ISt − IS0
t

〉

+ρ′
sd2(S, S0) (2)

for any S ∈ P , i ∈ {1, . . . , p}, and s ∈ {1, . . . , k} .
If (VP) is (ρ, ρ′)-V-univex type I at all S0 ∈ P , according to the partition

{J0, J1, . . . , Jk} relative to λ ∈ R
m+, then we say that (VP) is (ρ, ρ′)-V-univex type I on

P according to the partition {J0, J1, . . . , Jk} relative to λ ∈ R
m+.

If strict inequality holds in (1) (whenever S �= S0), then we say that (VP) is (ρ, ρ′)-semi
strictly V-univex type I at S0 or on P according to the partition {J0, J1, . . . , Jk} relative to
λ ∈ R

m+, depending on the case.

Definition 4 We say that the problem (VP) is (ρ0, ρ
′
0)-quasi V-univex type I at S0 ∈ P

according to the partition {J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and λ ∈ R

m+ if there is positive
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real functions α1, . . . , αp and β1, . . . , βk defined on �n ×�n , nonnegative functions b0 and
b1, also defined on �n × �n , ϕ0 : R → R, ϕ1 : R → R, such that the implications

b0(S, S0)ϕ0

[ p∑

i=1

τiαi (S, S0)
[
ψi
(
S, λJ0

)− ψi
(
S0, λJ0

)]
]

� 0

�⇒
p∑

i=1

τi

n∑

t=1

〈
Dtψi

(
S0, λJ0

)
, ISt − IS0

t

〉
� −ρ0d2(S, S0), ∀ S ∈ P, (3)

and

b1(S, S0)ϕ1

⎡

⎣
k∑

s=1

βs(S, S0)
∑

j∈Js

λ j g j (S
0)

⎤

⎦ � 0

�⇒
m∑

j=1, j /∈J0

λ j

n∑

t=1

〈
Dt g j (S

0), ISt − IS0
t

〉
� −ρ′

0d2(S, S0), ∀ S ∈ P, (4)

both hold.
If (VP) is (ρ0, ρ

′
0)-quasi V-univex type I at all S0 ∈ P according to the partition

{J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and λ ∈ R

m+, then we say that (VP) is
(
ρ0, ρ

′
0

)
-quasi

V-univex type I on P according to the partition {J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and

λ ∈ R
m+.

If the second (implied) inequality in (3) is strict (S �= S0), then we say that (VP) is (ρ0, ρ
′
0)

semi strictly quasi V-univex type I at S0 or on P according to the partition {J0, J1, . . . , Jk}
relative to τ ∈ R

p
+ and λ ∈ R

m+, depending on the case.

Definition 5 We say that the problem (VP) is (ρ0, ρ
′
0)-pseudo V-univex type I at S0 ∈ P

according to the partition {J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and λ ∈ R

m+, if there is positive
real functions α1, . . . , αp and β1, . . . , βk defined on �n × �n , nonnegative functions b0

and b1, also defined on �n × �n , ϕ0 : R → R, ϕ1 : R → R, such that for all S ∈ P , the
implications

p∑

i=1

τi

n∑

t=1

〈
Dtψi

(
S0, λJ0

)
, ISt − IS0

t

〉
� −ρ0d2(S, S0)

�⇒ b0(S, S0)ϕ0

[ p∑

i=1

τiαi (S, S0)
[
ψi
(
S, λJ0

)− ψi
(
S0, λJ0

)]
]

� 0, (5)

and

m∑

j=1, j /∈J0

λ j

n∑

t=1

〈
Dt g j (S

0), ISt − IS0
t

〉
� −ρ′

0d2(S, S0)

�⇒ b1(S, S0)ϕ1

⎡

⎣
k∑

s=1

βs(S, S0)
∑

j∈Js

λ j g j (S
0)

⎤

⎦ � 0, (6)

both hold.
If (VP) is (ρ0, ρ

′
0)-pseudo V-univex type I at all S0 ∈ P according to the partition

{J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and λ ∈ R

m+, then we say that (VP) is (ρ0, ρ
′
0)-pseudo
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V-univex type I on P according to the partition {J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and

λ ∈ R
m+.

If the second (implied) inequality in (5) is strict (S �= S0), then we say that (VP) is
(ρ0, ρ

′
0)-semi strictly pseudo V-univex type I at S0 or on P according to the partition

{J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and λ ∈ R

m+, depending on the case.
If the second (implied) inequalities in (5) and (6) are both strict, then we say that (VP) is

(ρ0, ρ
′
0)-strictly pseudo V-univex type I at S0 or on P , according to the partition {J0, J1, . . . ,

Jk} relative to τ ∈ R
p
+ and λ ∈ R

m+, depending on the case.

Definition 6 We say that the problem (VP) is
(
ρ0, ρ

′
0

)
-quasi pseudo V-univex type I at

S0 ∈ P according to the partition {J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and λ ∈ R

m+ if there
are some positive real functions α1, . . . , αp and β1, . . . , βk defined on �n × �n , nonnega-
tive functions b0 and b1, also defined on �n × �n , ϕ0 : R → R, ϕ1 : R → R, such that the
implications

b0(S, S0)ϕ0

[ p∑

i=1

τiαi (S, S0)
[
ψi
(
S, λJ0

)− ψi
(
S0, λJ0

)]
]

� 0

�⇒
p∑

i=1

τi

n∑

t=1

〈
Dtψi

(
S0, λJ0

)
, ISt − IS0

t

〉
� −ρ0d2(S, S0), ∀ S ∈ P, (7)

and

m∑

j=1, j /∈J0

λ j

n∑

t=1

〈
Dt g j (S

0), ISt − IS0
t

〉
� −ρ′

0d2(S, S0)

�⇒ b1(S, S0)ϕ1

⎡

⎣
k∑

s=1

βs(S, S0)
∑

j∈Js

λ j g j (S
0)

⎤

⎦ � 0, ∀ S ∈ P, (8)

do hold.
If (VP) is (ρ0, ρ

′
0)-quasi pseudo V-univex type I at all S0 ∈ P according to the partition

{J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and λ ∈ R

m+, then we say that (VP) is (ρ0, ρ
′
0)-quasi

pseudo V-univex type I on P according to the partition {J0, J1, . . . , Jk} relative to τ ∈ R
p
+

and λ ∈ R
m+.

If the second (implied) inequality in (8) is strict (S �= S0), then we say that (VP) is (ρ0, ρ
′
0)-

quasi strictly pseudo V-univex type I at S0 or on P , according to the partition {J0, J1, . . . , Jk}
relative to τ ∈ R

p
+ and λ ∈ R

m+, depending on the case.

Definition 7 We say that the problem (VP) is (ρ0, ρ
′
0) pseudo quasi V-univex type I at S0 ∈ P

according to the partition {J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and λ ∈ R

m+ if there are some
positive real functions α1, . . . , αp and β1, . . . , βk defined on �n ×�n , nonnegative functions
b0 and b1, also defined on �n × �n , ϕ0 : R → R, ϕ1 : R → R, such that for all S ∈ P, the
implications

p∑

i=1

τi

n∑

t=1

〈
Dtψi

(
S0, λJ0

)
, ISt − IS0

t

〉
� −ρ0d2(S, S0)

�⇒ b0(S, S0)ϕ0

[ p∑

i=1

τiαi (S, S0)
[
ψi
(
S, λJ0

)− ψi
(
S0, λJ0

)]
]

� 0, (9)
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and

b1(S, S0)ϕ1

⎡

⎣
k∑

s=1

βs(S, S0)
∑

j∈Js

λ j g j (S
0)

⎤

⎦ � 0

�⇒
m∑

j=1, j /∈J0

λ j

n∑

t=1

〈
Dt g j (S

0), ISt − IS0
t

〉
� −ρ′

0d2(S, S0), (10)

do hold.
If (VP) is (ρ0, ρ

′
0)-pseudo quasi V-univex type I at all S0 ∈ P according to the partition

{J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and λ ∈ R

m+, then we say that (VP) is (ρ0, ρ
′
0)-pseudo

quasi V-univex type I on P according to the partition {J0, J1, . . . , Jk} relative to τ ∈ R
p
+ and

λ ∈ R
m+.

If the second (implied) inequality in (9) is strict (S �= S0), then we say that (VP) is (ρ0, ρ
′
0)-

strictly pseudo quasi V-univex type I at S0 or on P according to the partition {J0, J1, . . . , Jk}
relative to τ ∈ R

p
+ and λ ∈ R

m+, depending on the case.

3 Some optimality conditions

The following result gives sufficient conditions for an element of P to be an efficient solu-
tion of problem (VP) under generalized type-I conditions with respect to a partition of the
constraints.

Theorem 1 (Sufficiency) Suppose that

(a1) S0 ∈ P;

(a2) there exist τ 0 ∈ R
p
+,

p∑
i=1

τ 0
i = 1, and λ0 ∈ R

m+ such that

(a) for any S ∈ P we have

p∑

i=1

τ 0
i

n∑

t=1

〈
Dt fi (S

0), ISt − IS0
t

〉
+

m∑

j=1

λ0
j

n∑

t=1

〈
Dt g j (S

0), ISt − IS0
t

〉
� 0,

(b) with respect to the partition {J0, J1, . . . , Jk} we have∑
j∈Js

λ0
j g j (S0) = 0 for any s ∈ {0, 1, . . . , k} ;

(a3) problem (VP) is (ρ0, ρ
′
0)-quasi strictly pseudo V-univex type I at S0 with ρ0 +ρ′

0 ≥ 0
according to the partition {J0, J1, . . . , Jk} relative to τ 0, λ0.

Further, suppose that, for r ∈ R, we have

r � 0 �⇒ ϕ0 (r) � 0 (11)

ϕ1 (r) < 0 �⇒ r < 0 (12)

and

b0(S, S0) > 0, b1(S, S0) > 0, ∀ S ∈ P. (13)

Then S0 is an efficient solution for (VP).
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Proof Suppose that S0 is not an efficient solution of (VP). Then there is an S′ ∈ P such that
f
(
S′) ≤ f (S0). Since λ0�

J0
gJ0 (S) � 0 for ∀ S ∈ P and by hypothesis (a2).b, λ0�

J0
gJ0(S

0) =
0, it follows that for any i = 1, . . . , p, we have

ψi
(
S′, λ0

J0

)− ψi (S
0, λ0

J0
) � fi

(
S′)− fi (S

0) � 0

Since τ 0 ∈ R
p
+ and αi (S′, S0) > 0, i = 1, . . . , p, it follows

p∑

i=1

τ 0
i αi (S

′, S0)
[
ψi (S

′, λ0
J0
)− ψi (S

0, λ0
J0
)
]

� 0

and using (11) and (13) we get

b0(S
′, S0)ϕ0

[ p∑

i=1

τ 0
i αi (S

′, S0)
(
ψi (S

′, λ0
J0
)− ψi (S

0, λ0
J0
)
)
]

� 0. (14)

From (14) and (7) it follows that

p∑

i=1

τ 0
i

n∑

t=1

〈
Dtψi (S

0, λ0
J0
), IS′

t
− IS0

t

〉
� −ρ0d2(S′, S0).

Since ψi (S0, λ0
J0
) = fi (S0)+ ∑

j∈J0

λ0
j g j (S0) and

p∑
i=1

τ 0
i = 1, the last inequality becomes

p∑

i=1

τ 0
i

n∑

t=1

〈
Dt fi (S

0), IS′
t
− IS0

t

〉
+
∑

j∈J0

λ0
j

n∑

t=1

〈
Dt g j (S

0), IS′
t
− IS0

t

〉
� −ρ0d2(S′, S0).

(15)

By inequality (15) and assumption (a2).a, we have

m∑

j=1, j /∈J0

λ0
j

n∑

t=1

〈
Dt g j (S

0), IS′
t
− IS0

t

〉
� ρ0d2(S′, S0).

Since ρ0 + ρ′
0 ≥ 0, it follows

m∑

j=1, j /∈J0

λ0
j

n∑

t=1

〈
Dt g j (S

0), IS′
t
− IS0

t

〉
� −ρ′

0d2(S′, S0). (16)

From (16) and assumption (a3), it follows that

b1(S
′, S0)ϕ1

⎡

⎣
k∑

s=1

βs(S
′, S0)

∑

j∈Js

λ0
j g j (S

0)

⎤

⎦ < 0. (17)

From (17), (13) and (12), we have

k∑

s=1

βs(S
′, S0)

∑

j∈Js

λ0
j g j (S

0) < 0. (18)
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On the other hand, by hypotheses (a2).b we have
∑
j∈Js

λ0
j g j (S0) = 0 for any s ∈ {1, . . . , k},

which implies

k∑

s=1

βs(S
′, S0)

∑

j∈Js

λ0
j g j (S

0) = 0. (19)

Equation 19 contradicts inequality (18), and therefore the theorem is proved. ��
The next result gives necessary condition for a properly efficient solution of (VP).

Theorem 2 (Necessity) (Zalmai [28]). Suppose that

(b1) S0 is a properly efficient solution of (VP);
(b2) there exists S∗ ∈ P with gM0 (S

∗) < 0 where M0 = { j | g j (S0) = 0
}
, such that

g j (S
0)+

n∑

t=1

〈
Dt g j (S

0), IS∗
t

− IS0
t

〉
< 0, ∀ j ∈ {1, . . . ,m} .

Then there exist τ 0 ∈ R
p, τ 0 > 0, and λ0 ∈ R

m+ such that we have

p∑

i=1

τ 0
i

n∑

t=1

〈
Dt fi (S

0), ISt − IS0
t

〉
+

m∑

j=1

λ0
j

n∑

t=1

〈
Dt g j (S

0), ISt − IS0
t

〉
� 0,

for any S ∈ P,
and

λ0
j g j (S

0) = 0, j ∈ {1, . . . ,m} .

4 Generalized Mond–Weir duality

With respect to the partition {J0, J1, . . . , Jk} of its constraints, we associate with problem
(VP) the multiobjective dual problem:

maximize
(

f1 (T )+ λ�
J0

gJ0 (T ) , . . . , f p (T )+ λ�
J0

gJ0 (T )
)

subject to (T, τ, λ) ∈ D
(GMWD)

where

D =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T, τ, λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p∑

i=1

τi

n∑

t=1

〈
Dt

(
fi + λ�

J0
gJ0

)
(T ) , ISt − ITt

〉

+
m∑

j=1

λ j

n∑

t=1

〈
Dt g j (T ) , ISt − ITt

〉
� 0, ∀ S ∈ �n

λ�
Js

gJs (T ) � 0, s = 1, . . . , k,

T ∈ �n, τ ∈ R
p
+, e�τ = 1, λ ∈ R

m+

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

is the set of feasible solutions of (GMWD), with e = (1, . . . , 1)� ∈ R
p .

Theorem 3 (Weak duality) Suppose that
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(i1) S ∈ P;
(i2) (T, τ, λ) ∈ D and τ > 0;
(i3) problem (VP) is (ρ0, ρ

′
0)-pseudo quasi V-univex type I at T with ρ0+ρ′

0 ≥ 0 according
to the partition {J0, J1, . . . , Jk} with respect to τ and λ and some positive functions
αi , i ∈ {1, . . . , p}, βs , s ∈ {1, . . . , k}.

Further, assume that for r ∈ R we have

ϕ0 (r) � 0 �⇒ r � 0 (20)

r � 0 �⇒ ϕ1 (r) � 0 (21)

and

b0 (S, T ) > 0, b1 (S, T ) � 0. (22)

Then f (S) � f (T )+ λ�
J0

gJ0 (T ) e.

Proof By hypothesis (i2), we have λ�
Js

gJs (T ) � 0, for all s ∈ {1, . . . , k} . Since βs , s ∈
{1, . . . , k} , are all positive functions, we have

k∑

s=1

βs (S, T ) λ�
Js

gJs (T ) � 0. (23)

By hypothesis (i3), (21), (22) and (23), it follows that

m∑

j=1, j /∈J0

λ j

n∑

t=1

〈
Dt g j (T ) , ISt − ITt

〉
� −ρ′

0d2 (S, T ) . (24)

From (24) and hypothesis (i2), we obtain

p∑

i=1

τi

n∑

t=1

〈
Dt

(
fi + λ�

J0
gJ0

)
(T ) , ISt − ITt

〉
� ρ′

0d2 (S, T )

and by assumption (i3) we have

p∑

i=1

τi

n∑

t=1

〈
Dt

(
fi + λ�

J0
gJ0

)
(T ) , ISt − ITt

〉
� −ρ0d2 (S, T ) . (25)

From (25) and using again hypothesis (i3), we get

b0 (S, T ) ϕ0

[ p∑

i=1

τiαi (S, T )
[(

fi + λ�
J0

gJ0

)
(S)−

(
fi + λ�

J0
gJ0

)
(T )
]]

� 0. (26)

From (26), (20) and (22), it follows

p∑

i=1

τiαi (S, T )
[(

fi + λ�
J0

gJ0

)
(S)−

(
fi + λ�

J0
gJ0

)
(T )
]

� 0. (27)

Assume that f (S) ≤ f (T )+λ�
J0

gJ0 (T ) e. For S ∈ P and λJ0 � 0 we have λ�
J0

gJ0 (S) � 0.
It follows

f (S)+ λ�
J0

gJ0 (S) e ≤ f (T )+ λ�
J0

gJ0 (T ) e
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and since αi > 0, τ > 0, we get

p∑

i=1

τiαi (S, T )
(

f (S)+ λ�
J0

gJ0 (S) e − f (T )− λ�
J0

gJ0 (T ) e
)
< 0,

which contradicts (27). Therefore, the theorem is proved. ��
Following the line used in the proof of the previous theorem we can get the next duality

result by replacing the pseudo quasi V-univexity hypothesis with that of the semi strictly
V-univexity one.

Theorem 4 (Weak duality) Suppose that assumptions (i1) and (i2) of Theorem 3 hold. We
also assume that

(i3′) problem (VP) is (ρ, ρ′)-semi strictly V-univex type I at T with
p∑

i=1

τiρi
αi (S,T )

+
k∑

s=1

ρ′
s

βs (S,T )
≥ 0 according to the partition {J0, J1, . . . , Jk}, with respect to λ and

some positive functions α∗
i , i ∈ {1, . . . , p}, β∗

s , s ∈ {1, . . . , k}.
Further, assume that the functions ϕ0 and ϕ1 have the properties

ϕ0 (r) � 0 �⇒ r � 0 (28)

and

r � 0 �⇒ ϕ1 (r) � 0, (29)

with ϕ0 linear, and

b0 (S, T ) > 0, b1 (S, T ) � 0. (30)

Then f (S) � f (T )+ λ�
J0

gJ0 (T ) e.

Theorem 5 (Strong duality) Suppose that

(j1) S0 is a properly efficient solution of (VP);
(j2) there exists S∗ ∈ P with gM0 (S

∗) < 0, where M0 = { j | g j (S0) = 0
}
, such that

g j (S
0)+

n∑

t=1

〈
Dt g j (S

0), IS∗
t

− IS0
t

〉
< 0, ∀ j ∈ {1, . . . ,m} .

Then there exist τ 0 ∈ R
p, τ 0 > 0 and λ0 ∈ R

m+ such that (S0, τ 0, λ0) ∈ D and the objective
functions of (VP) and (GMWD) have the same values at S0 and (S0, τ 0, λ0), respectively.
If problem (VP) is

(
ρ0, ρ

′
0

)
-pseudo quasi V-univex type I with ρ0 + ρ′

0 ≥ 0 at all feasible
solutions of (GMWD) according to the partition {J0, J1, . . . , Jk}, with respect to τ 0, λ0, and
conditions (20)–(22) of Theorem 3 are satisfied, then (S0, τ 0, λ0) ∈ D is an efficient solution
to (GMWD).

Proof By Theorem 2, there exist τ 0 ∈ R
p, τ 0 > 0, and λ0 ∈ R

m+ such that, for any S ∈ P
we have

p∑

i=1

τ 0
i

n∑

t=1

〈
Dt fi (S

0), ISt − IS0
t

〉
+

m∑

j=1

λ0
j

n∑

t=1

〈
Dt g j (S

0), IS∗
t

− IS0
t

〉
� 0
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and

λ0
j g j (S

0) = 0, j ∈ {1, . . . ,m} .
Therefore (S0, τ 0, λ0) ∈ D, and obviously both problems (VP) and (GMWD) have the same
value of the objective function.

Suppose that (S0, τ 0, λ0) is not an efficient solution of (GMWD). Then there exists a
point (T ∗, τ ∗, λ∗) ∈ D such that f (S0) ≤ f (T ∗) + λ∗�

J0
gJ0(T

∗)e, which contradicts the

weak duality Theorem 3. Therefore (S0, τ 0, λ0) is an efficient solution of (VP). ��
Theorem 6 (Strong duality) Suppose that (j1) and (j2) of Theorem 5 are satisfied. Then there
are τ 0 ∈ R p, τ 0 > 0 and λ0 ∈ R

m+ such that (S0, τ 0, λ0) ∈ D and the objective functions of
(VP) and (GMWD) have the same values at S0 and (S0, τ 0, λ0), respectively.
If problem (VP) is (ρ0, ρ

′
0)-semi strictly V-univex type I with ρ0 + ρ′

0 ≥ 0 at all feasible
solutions of (GMWD) according to the partition {J0, J1, . . . , Jk}, with respect to λ0, and
conditions (28)–(30) of Theorem 4 are satisfied, then (S0, τ 0, λ0) ∈ D is an efficient solution
to (GMWD).

Theorem 7 (Converse duality) Suppose that

(k1) (T 0, τ 0, λ0) ∈ D with τ 0 > 0;
(k2) T 0 ∈ P;

(k3) problem (VP) is (ρ, ρ′)-V-univex type I at T 0, with
p∑

i=1

τ 0
i ρi

αi (S,T 0)
+

k∑
s=1

ρ′
s

βs (S,T 0)
≥

0 ∀ S ∈ P , according to the partition {J0, J1, . . . , Jk}, with respect to λ0 and some
positive functions αi , i ∈ {1, . . . , p}, and βs , s ∈ {1, . . . , k}.

Assume also that the functions ϕ0 and ϕ1 have the properties
⎧
⎨

⎩

r < 0 �⇒ ϕ0 (r) < 0
ϕ0 (0) � 0
r1 � r2 �⇒ ϕ0 (r1) � ϕ0 (r2) ,

(31)

r � 0 �⇒ ϕ1 (r) � 0 (32)

and

b0(S, T 0) > 0, b1(S, T 0) � 0, ∀ S ∈ P. (33)

Then T 0 is an efficient solution of (VP).
If, in addition, there exist positive numbers ni ,mi such that ni < αi (S, T 0) < mi for all
S ∈ P and i = 1, . . . , p, then T 0 is properly efficient to (VP).

Proof From hypothesis (k1), we have
∑

j∈Js

λ0
j g j (T

0) � 0, s ∈ {1, . . . , k} . (34)

By hypothesis (k3), using Definition 3, we have for any S ∈ P and i ,

b0(S, T 0)ϕ0
[
ψi
(
S, λ0

J0

)− ψi
(
T 0, λ0

J0

)]

� αi (S, T 0)
〈
Dψi

(
T 0, λ0

J0

)
, IS − IT 0

〉+ ρi d
2(S, T 0), (35)
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and for any s,

− b1(S, T 0)ϕ1

⎡

⎣
∑

j∈Js

λ0
j g j (T

0)

⎤

⎦ � βs(S, T 0)
∑

j∈Js

λ j
〈
Dg j (T

0), IS − IT 0
〉

+ρ′
sd2(S, T 0). (36)

Since αi > 0, βs > 0, for ∀ i, s, and τ 0 > 0, λ0 � 0, it follows by (35), (36) and (k3) that

p∑

i=1

τ 0
i

αi (S, T 0)
b0(S, T 0)ϕ0

[
ψi (S, λ

0
J0
)−ψi (T

0, λ0
J0
)
]

−
k∑

s=1

b1(S, T 0)

βs(S, T 0)
ϕ1

⎡

⎣
∑

j∈Js

λ0
j g j (T

0)

⎤

⎦

�
p∑

i=1

τ 0
i

〈
Dψi (T

0, λ0
J0
), IS − IT 0

〉+
m∑

j=1, j /∈J0

λ0
j

〈
Dg j (T

0), IS − IT 0
〉

+
( p∑

i=1

τ 0
i ρi

αi (S, T 0)
+

k∑

s=1

ρ′
s

βs(S, T 0)

)
d2(S, T 0) � 0 (37)

From (32), (34), and (37) it follows that for all S ∈ P ,

p∑

i=1

τ 0
i

αi (S, T 0)
b0(S, T 0)ϕ0

[
ψi (S, λ

0
J0
)− ψi (T

0, λ0
J0
)
]

� 0. (38)

Suppose that T 0 is not an efficient solution of (VP). Then there exists an S′ ∈ P such that
f
(
S′) ≤ F(T 0, τ 0, λ0), which implies, by using (31) and (33), that

p∑

i=1

τ 0
i

αi (S′, T 0)
b0
(
S′, T 0)ϕ0

[
ψi (S

′, λ0
J0
)− ψi (T

0, λ0
J0
)
]

�
p∑

i=1

τ 0
i

αi (S′, T 0)
b0(S

′, T 0)ϕ0
[

fi (S
′)− ψi (T

0, λ0
J0
)
]
< 0. (39)

Obviously, (38) and (39) are in contradiction. Therefore we get the conclusion of the theorem.
To establish the proper efficiency of T 0 for (VP), we define

M = (p − 1)max

{
miτ j

n jλi

∣∣∣∣ i, j ∈ {1, . . . , p} , i �= j

}

and use (38) to get a contradiction. ��
Also, following the same line as in the above proof we can get the next converse dual-

ity results by replacing the V-univexity with that of semi strictly pseudo V-univexity or the
strictly pseudo quasi V-univexity hypotheses.

Theorem 8 (Converse duality) Suppose that (k1) and (k2) of Theorem 7 are fulfilled and

(k3′) problem (VP) is
(
ρ0, ρ

′
0

)
-semi strictly pseudo V-univex type I in g, at T 0, with ρ0 +

ρ′
0 ≥ 0, according to the partition {J0, J1, . . . , Jk}, with respect to τ 0, λ0 and some

positive functions αi , i ∈ {1, . . . , p}, βs, s ∈ {1, . . . , k}.
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Assume also that the functions ϕ0 and ϕ1 have the properties

ϕ0 (r) � 0 �⇒ r � 0, (40)

r � 0 �⇒ ϕ1 (r) � 0 (41)

and

b0(S, T 0) > 0, b1(S, T 0) � 0, ∀ S ∈ P. (42)

Then T 0 is an efficient solution of (VP).
If, in addition, there exist positive numbers ni ,mi such that ni < αi (S, T 0) < mi for all
S ∈ P and i ∈ {1, . . . , p} , then T 0 is properly efficient to (VP).

Theorem 9 (Converse duality) Suppose that (k1) and (k2) of Theorem 7 are fulfilled and

(k3′′) problem (VP) is (ρ0, ρ
′
0)-strictly pseudo quasi V-univex type I at T 0,withρ0+ρ′

0 ≥ 0,
according to the partition {J0, J1, . . . , Jk}, with respect to τ 0, λ0 and some positive
functions αi , i ∈ {1, . . . , p}, βs, s ∈ {1, . . . , k} .

Assume also that the functions ϕ0 and ϕ1 have the properties
{

r < 0 �⇒ ϕ0 (r) � 0,
r1 � r2 �⇒ ϕ0 (r1) � ϕ0 (r2) ,

(43)

r � 0 �⇒ ϕ1 (r) � 0 (44)

and

b0(S, T 0) > 0, b1(S, T 0) � 0, ∀ S ∈ P. (45)

Then T 0 is an efficient solution of (VP).
If, in addition, there exist positive numbers ni ,mi such that ni < αi (S, T 0) < mi for all
S ∈ P and i = 1, . . . , p, then T 0 is properly efficient for (VP).

Remark 1 The advantage of Mond–Weir type dual problem over the primal one [15] is that
the objective of the dual is the same as that of the primal, when J0 = ∅, and more importantly,
the convexity requirements for the dual problem can be relaxed. Moreover, the partition of the
constraints index set makes possible to have fewer constraints in the dual problem (depend-
ing on the number of elements in the partition). For example, if the partition consists of
two elements, J0 and J1, then the dual problem has only one constraint, whereas the primal
problem has m constraints.

5 Some special classes of functions

We mentioned in the first section some references concerning the V-univexity or generalized
V-univexity in the case of R

n . Some of these references contain instances that certify the
class of functions introduced there.

The aim of this section is to present how we can obtain some classes of functions defined
in Sect. 2 starting from classes of functions defined on R

n . Also, the way we proceed can be
used to transform easily the examples (or combination of them) of V-univexity or generalized
V-univexity type, given in the above mentioned references, into examples for optimization
problems which involve set functions.
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The following results apply only for the classes of functions that correspond to Defini-
tion 4. For the others, which correspond to Definitions 3, 5, 6 and 7, we can proceed similarly
and for reasons of shortening we don’t present them any more.

At the first, we reformulate a part of the Definition 4 for the R
n case.

Let us consider the multiobjective optimization problem

minimize f̃ (x) =
(

f̃1 (x) , . . . , f̃ p (x)
)

subject to g̃ (x) � 0,
(ṼP)

where f̃ : X0 ⊆ R
n → R

p , g̃ = (g̃1 (x) , . . . , g̃m (x)) : X0 → R
m are differentiable func-

tions. Let X̃0 = {x ∈ X0 | g̃ (x) � 0
}

be the set of feasible solutions and consider a partition
{J0, J1, . . . , Jk} of the index set {1, 2, . . . ,m} . Let us consider

ψ̃i
(
x, λJ0

) = f̃i (x)+ λ�
J0

g̃J0 (x) , i = 1, . . . p,

and d̃ : X0 × X0 → R.

Definition 8 We say that the problem (ṼP) is (ρ0, ρ
′
0)-quasi V-univex type I according to

the partition {J0, J1, . . . , Jk} if there exist positive real functions α̃1, . . . , α̃p and β̃1, . . . , βk

defined on R
n ×R

n , nonnegative functions b̃0 and b̃1, also defined on R
n ×R

n , ϕ0 : R → R,

ϕ1 : R → R, such that for some vectors τ ∈ R
p
+ and λ ∈ R

m+ the following implications hold
for x, x0 ∈ X̃0:

b̃0
(
x, x0)ϕ0

[ p∑

i=1

τi α̃i (x, x0)
[
ψ̃i (x, λJ0)− ψ̃i (x

0, λJ0)
]]

� 0

�⇒
p∑

i=1

τi

n∑

t=1

ψ̃ t
i (x

0, λJ0)(xt − x0
t ) � −ρ0d̃2(x, x0), (46)

and

b̃1
(
x, x0)ϕ1

⎡

⎣
k∑

s=1

β̃s(x, x0)
∑

j∈Js

λ j g̃ j (x
0)

⎤

⎦ � 0

�⇒
m∑

j=1, j /∈J0

λ j

n∑

t=1

g̃t
j (x

0)(xt − x0
t ) � −ρ′

0d̃2(x, x0), (47)

where ψ̃ t
i (respectively, g̃t

j ) is the t th partial derivative of ψ̃i (respectively, of g̃ j ) with respect
to xt , the t th component of vector x .

Let us remark that for S = (S1, . . . , Sn) ∈ �n and

G (S) = θ
(〈

h1, IS1

〉
, . . . ,

〈
hn, ISn

〉)
,

where θ : R
n → R is a differentiable function, h1, . . . , hn ∈ L1 (X, �, µ), we have

Dt G (S) = θ t (〈h1, IS1

〉
, . . . ,

〈
hn, ISn

〉)
ht
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where θ t denotes the t th partial derivative of θ . Now we see that

n∑

t=1

〈
Dt G(S

0), ISt − IS0
t

〉
=

n∑

t=1

θ t
(〈

h1, IS0
1

〉
, . . . ,

〈
hn, IS0

n

〉) (〈
ht , ISt

〉−
〈
ht , IS0

t

〉)

=
n∑

t=1

θ t
(〈

h1, IS0
1

〉
, . . . ,

〈
hn, IS0

n

〉) 〈
ht , ISt − IS0

t

〉

Now we can state the following result.

Proposition 1 We suppose that (ṼP) is (ρ0, ρ
′
0)-quasi V-univex type I. Let us consider the

problem (VP) with

fi (S) = ui
(〈

h1, IS1

〉
, . . . ,

〈
hn, ISn

〉)
, i = 1, . . . , p,

g j (S) = v j
(〈

h1, IS1

〉
, . . . ,

〈
hn, ISn

〉)
, j = 1, . . . ,m,

where ui : R
n → R, i = 1, . . . , p, and v j : R

n → R, j = 1, . . . ,m, are differentiable
functions, h1, . . . , hn ∈ L1 (X, �, µ). Then (VP) is (ρ0, ρ

′
0)-quasi V-univex type I.

Proof Let us consider that (ṼP) is
(
ρ0, ρ

′
0

)
-quasi V-univex type I. Then (46) and (47) hold.

We shall prove that (VP) is also (ρ0, ρ
′
0)-quasi V-univex type I by verifying that (3) and (4)

hold.
Let S0 ∈ P and S ∈ P be such that

b0(S, S0)ϕ0

[ p∑

i=1

τiαi (S, S0)
[
ψi (S, λJ0)− ψi (S

0, λJ0)
]
]

� 0. (48)

If we take

b0(S, S0) = b̃0

(〈
h1, IS1

〉
, . . . ,

〈
hn, ISn

〉 ;
〈
h1, IS0

1

〉
, . . . ,

〈
hn, IS0

n

〉)
,

αi (S, S0) = α̃i

(〈
h1, IS1

〉
, . . . ,

〈
hn, ISn

〉 ;
〈
h1, IS0

1

〉
, . . . ,

〈
hn, IS0

n

〉)
,

ψi
(
S, λJ0

) = ψ̃i
(〈

h1, IS1

〉
, . . . ,

〈
hn, ISn

〉 ; λJ0

)
, i = 1, . . . , p,

and

d2(S, S0) = d̃2
(〈

h1, IS1

〉
, . . . ,

〈
hn, ISn

〉 ;
〈
h1, IS0

1

〉
, . . . ,

〈
hn, IS0

n

〉)
,

then (48) becomes (46) with

x = (〈h1, IS1

〉
, . . . ,

〈
hn, ISn

〉)
,

x0 =
(〈

h1, IS0
1

〉
, . . . ,

〈
hn, IS0

n

〉) (49)

Using now the assumption that (ṼP) is
(
ρ0, ρ

′
0

)
-quasi V-univex type I, we get

p∑

i=1

τi

n∑

t=1

ψ̃ t
i

(〈
h1, IS0

1

〉
, . . . ,

〈
hn, IS0

n

〉
; λJ0

) 〈
ht , ISt − IS0

t

〉

� −ρ0d̃2
(〈

h1, IS1

〉
, . . . ,

〈
hn, ISn

〉 ;
〈
h1, IS0

1

〉
, . . . ,

〈
hn, IS0

n

〉)
,
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that is
p∑

i=1

τi

n∑

t=1

〈
Dtψi

(
S0, λJ0

)
, ISt − IS0

t

〉
� −ρ0d2(S, S0),

i.e., the implied condition in relation (3).
Now, to prove that the relation (4) in Definition 4 holds, we consider again S0 ∈ P, S ∈ P ,

we choose

b1(S, S0) = b̃1

(〈
h1, IS1

〉
, . . . ,

〈
hn, ISn

〉 ;
〈
h1, IS0

1

〉
, . . . ,

〈
hn, IS0

n

〉)
,

βs(S, S0) = β̃s

(〈
h1, IS1

〉
, . . . ,

〈
hn, ISn

〉 ;
〈
h1, IS0

1

〉
, . . . ,

〈
hn, IS0

n

〉)
,

for s = 1, . . . , k, and we assume that

b1(S, S0)ϕ1

⎡

⎣
k∑

s=1

βs(S, S0)
∑

j∈Js

λ j g j (S
0)

⎤

⎦ � 0.

This relation is now equivalent to

b̃1(x, x0)ϕ1

⎡

⎣
k∑

s=1

β̃s(x, x0)
∑

j∈Js

λ j g̃ j (x
0)

⎤

⎦ � 0,

where x, x0 are defined by (49). Using now that (ṼP) is
(
ρ0, ρ

′
0

)
-quasi V-univex type I, we

obtain that
m∑

j=1, j /∈J0

λ j

n∑

t=1

g̃t
j (x

0)(xt − x0
t ) � −ρ′

0d̃2(x, x0),

i.e., (47) hold. Using now similar arguments as before, we get that this relation is equivalent
to (4). Thus the proposition is proved. ��

In the above Proposition we can take X = {
(a, b) ∈ R

2 | a2 + b2 � 4
}
. Then � =

{T | T ⊆ X} is a σ -algebra. Let us consider µ be the Lebesgue measure. Then (X, �, µ) is
a finite atomless measure space.

We see that for r = 1, . . . , n, hr (a, b) = ra2 + rb2 + r ∈ L1 (X, �, µ) and we can
construct without difficulties classes of functions of those type given in Section 2 by taking
different particular forms for u1, . . . , u p and v1, . . . , vm : R

n→ R.
Starting from here we also can construct without difficulties particular dual problems.
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